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Abstract
Large-scale molecular dynamics (MD) simulations of liquid drops spreading on a solid
substrate have been carried out for a very wide range of solid–liquid interactions and
equilibrium contact angles. The results for these systems are shown to be consistent with the
molecular-kinetic theory (MKT) of dynamic wetting, which emphasizes the role of contact-line
friction as the principal channel of energy dissipation. Several predictions have been confirmed.
These include a quantitative link between the dynamics of wetting and the work of adhesion and
the existence of an optimum equilibrium contact angle that maximizes the speed of wetting. A
feature of the new work is that key parameters (κ0 and λ), normally accessible only by fitting
the MKT to dynamic contact angle data, are also obtained directly from the simulations, with
good agreement between the two sources. This validates the MKT at some fundamental level.
Further verification is provided by contact angle relaxation studies, which also lend support to
the interfacial tension relaxation process invoked in Shikhmurzaev’s hydrodynamic model of
dynamic wetting.

1. Introduction

When a liquid drop is placed in contact with a solid substrate,
it spreads spontaneously towards its equilibrium shape, with a
dynamic contact angle θD starting from 180◦ and relaxing to its
static value θS. Because of contact angle hysteresis, θS may be
greater than θ0, the equilibrium contact angle given by Young’s
equation. During spreading, the velocity of the contact line VCL

falls from some initially high value towards zero. For a given
system under a given set of conditions, θD = f (VCL). The
principal driving force for spreading is provided by the change
in surface free energy; for small drops, gravity can usually
be neglected. Since the shape of the drop changes, energy is
dissipated. Aside from viscous losses within the bulk of the
drop, there are two principal channels for dissipation due to the

1 Author to whom any correspondence should be addressed.

presence of the moving contact line at which the liquid–vapour
interface meets the solid surface [1–5]2:

• viscous flow in the narrow wedge of liquid near the contact
line;

• dissipation associated with the expansion of the solid–
liquid interface in the immediate vicinity of the contact
line.

Both channels may contribute to the observed changes in
θD.

The first channel is characterized by the shear viscosity
of the liquid ηL and can be described by hydrodynamics.
For viscous liquids at small dynamic angles, this can be
the dominant mode, especially for receding contact lines
and completely wetting liquids. Models of dynamic wetting

2 In the case of complete wetting (θ0 = 0), the surface pressure of the liquid
on the solid may cause a precursor film to form ahead of the drop. Flow within
this film then provides an additional dissipation channel [3, 6]. Processes
occurring at the leading edge of this film are presumably similar to those at
an advancing contact line but are not considered explicitly here.
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Figure 1. Representation of the moving contact line according to the
molecular-kinetic theory.

that emphasize this channel, such as that of Voinov [1],
Cox [7] and Dussan [8], have proved successful in accounting
for the experimentally observed variation of θD in such
cases (e.g. [3, 9–12]). Several schemes have been devised
to accommodate the moving contact line within this flow.
These have their limitations and are still a matter of some
debate [11, 13].

The second channel is characterized by molecular
interactions near the contact line. An innovative way
of incorporating these effects within the hydrodynamic
framework has been proposed by Shikhmurzaev [13, 14].
However, despite considerable success in explaining a wide
range of dynamic wetting behaviour in a consistent way, this
approach awaits universal acceptance and would benefit from
independent verification of its key parameters. An earlier
model of dissipation within this small region, that neglects
the hydrodynamics, the so-called molecular-kinetic theory
(MKT) [15, 16], has also been successful in accounting for
much of the observed behaviour of the dynamic contact angle
in both experiment and simulation (e.g. [10–12, 16, 17]).
In this model, the key parameters are κ0, the equilibrium
frequency of random molecular displacements occurring at the
contact line, and λ, the average distance of each displacement.
These are usually accessed by fitting dynamic contact angle
data, but would again benefit from some means of independent
assessment. It is this model that will be explored in the present
paper within the context of large-scale molecular dynamics
(MD) simulations.

As computer power has grown, MD simulations have
proved to be an increasingly effective tool for exploring
dynamic wetting phenomena (e.g. [11, 17–28]). Significantly,
detailed comparisons between the simulations and the
predictions of the MKT have tended to validate the latter
at some fundamental level. For example, the molecular
parameters (κ0 and λ) obtained by fitting the MKT to dynamic
contact angle data from simulations of spreading drops have
been shown to agree rather well with the same parameters
obtained by analysing the statistics of the molecular behaviour
observed within the simulations [17, 25, 28].

Quite recently, the MKT has been extended to show
how κ0 might be estimated, a priori, from equilibrium

wetting properties, specifically the reversible work of adhesion
between the liquid and the solid written in terms of the
equilibrium contact angle: Wa0

SL = γL(1 + cos θ0) [29].
Supporting evidence was drawn from both experiment and
some early simulations. Additional data have since been
obtained by Vega et al [30]. Moreover, in just the last
year, Ray et al [31] have published an extensive experimental
study of dynamic wetting on carefully engineered surfaces of
widely varying wettability that provides perhaps the strongest
evidence to date of the predicted relationship between the
dynamics of wetting and Wa0

SL.
In what follows, we present new results of large-scale

simulations of spreading drops carried out for a very wide
range of solid–liquid interactions and corresponding values of
θ0 and Wa0

SL. The data are analysed at the molecular level
and compared with the predictions of the MKT applied to the
global behaviour of the drop. The work is an extension of an
earlier study carried out in this laboratory by de Ruijter et al
[17, 32]. As we will show, our findings do indeed support
the idea that equilibrium wetting properties have a strong and
broadly predictable effect on wetting dynamics. We commence
with an outline of the MKT. Details of the MD model and the
droplet spreading simulations are given in sections 3 and 4.
Results are presented in section 5 and compared with the MKT.
Section 6 deals with independent verification of κ0 and λ. Our
conclusions are summarized in section 7.

2. Molecular-kinetic theory

The first description of dynamic wetting to take account of
the dissipation at the contact line due to interactions with the
solid was given by Blake and Haynes [15, 16, 33]. According
to their view, the movement of the contact line is determined
by the statistical dynamics of the molecules within the three-
phase zone (TPZ) where the solid, liquid and gas phases meet.
At the molecular scale, this zone has a finite size, comparable
with the thickness of its component interfaces, but is otherwise
unspecified (figure 1).

As noted above, the key parameters are κ0, the equilibrium
frequency of random molecular displacements or ‘jumps’,
occurring within the TPZ, and λ, the average distance of each
jump. The frequency κ0 is related to the depth of the potential
wells within the energy landscape of the solid surface, while
λ is related to their separation. When the contact line is
stationary, the frequency of jumps in the forward and backward
directions is the same: κ+ = κ− = κ0, and there is no net
flux. Dissipation occurs when this equilibrium is displaced
by an applied force leading to the net displacement of the
contact line. Dynamic wetting is then seen as a classical stress-
modified rate process. The variation in the dynamic contact
angle is due to the disturbance of local adsorption equilibria,
and hence to changes in the local surface tensions as the contact
line moves across the solid surface. These changes in the
surface tensions give rise to the driving force required to restore
equilibrium Fw = γL(cosθ0 − cosθD), which is then dissipated
through the molecular interactions and eventually appears as
heat.

2
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Application of Frenkel–Eyring theory [34, 35] to this
process gives the following simple equation for the contact-line
velocity:

VCL = 2κ0λ sinh

(
γL(cos θ0 − cos θD)

2nkBT

)
, (1)

where n is the number of adsorption sites per unit area of
the solid surface, kB is the Boltzmann constant and T the
temperature. The equilibrium frequency κ0 is related to the
specific activation free energy of wetting per unit area �g∗

w by

κ0 = kBT

h
exp

(−�g∗
w

nkBT

)
, (2)

where h is the Planck constant.
If the adsorption sites are distributed uniformly and

molecules move only between adjacent sites, then n ≈ 1/λ2.
In this case, (1) contains only two unknown parameters, κ0 and
λ, the values of which can be obtained by fitting the equation to
experimental data. While the fitted value of λ is usually found
to be of molecular dimensions, κ0 can vary widely [11, 16, 36]
and generally decreases with increasing liquid viscosity.

The effect of viscosity on κ0 is accounted for by
supposing that �g∗

w is the sum of contributions from both
viscous interactions between the liquid molecules �g∗

LL and
interactions between the liquid molecules and the solid �g∗

SL,
�g∗

w = �g∗
LL + �g∗

SL. The Eyring theory of viscous flow [34]
gives �g∗

LL = nkBT ln(ηLvL/h), where vL is the volume of
the unit of flow. Substitution in (2) then gives

κ0 = kBT

ηLvL
exp

(−�g∗
SL

nkBT

)
. (3)

Thus, κ0 is inversely dependent on ηL, as observed.
The next step is to estimate �g∗

SL. Since this depends on
the solid–liquid interactions, it seems reasonable to suppose
that it must be related to the reversible work of adhesion
Wa0

SL. This is equivalent to assuming that the depth of each
potential-energy well is related to Wa0

SL/n. If so, then to a
first approximation we can write �g∗

SL = γL(1 + cos θ0) [29],
whence

κ0 = kBT

ηLvL
exp

(−γL(1 + cos θ0)

nkBT

)
. (4)

Substitution in (1) then gives a formula with just one
unknown, the molecular jump length λ. Equation (4) is one of
the key relationships we have investigated in the present work.

If the system is not too far from equilibrium, i.e. θD is not
too different from θ0, then the argument of the sinh function
in (1) will be small and the expression reduces to the linear
form

VCL = κ0λ

nkBT
γL(cos θ0 − cos θD), (5)

which may be written more simply as

VCL = 1

ζ 0
CL

γL(cos θ0 − cos θD), (6)

where ζ 0
CL = nkB T

κ0λ
≈ kB T

κ0λ3 is termed the coefficient of
contact-line friction between the liquid and the solid [17].

This coefficient determines the rate of dissipation in the linear
regime and has the same units as viscosity. Furthermore, we
can link it to θ0 via (4):

ζ 0
CL ≈ ηLvL

λ3
exp

(
γL(1 + cos θ0)

nkBT

)
. (7)

Contact-line dissipation should therefore increase linearly
with viscosity but exponentially with solid–liquid interaction.
Evidence supporting the latter prediction has been found from
experiment and MD simulation [29–31].

One consequence of this result is that, because both the
driving force for wetting FW and the contact-line friction
increase with solid–liquid interactions, there may be an
optimum wettability that maximizes the rate of wetting.
Specifically, it is predicted that there will be an optimum θ0

that maximizes the contact-line speed as θD approaches 180◦,
and this θ0 will be greater than zero whenever

2γL

nkBT ln 3
> 1. (8)

The maximum will occur at

θ0
Opt = cos−1

(
nkBT ln 3

γL
− 1

)
. (9)

Qualitative evidence for this behaviour can be found in the
patent literature [37].

3. Simulation model

Here we describe the main elements of the simulations:
the potentials, the specific parameters and the simulation
characteristics. The general approach and parameter values
follow previous simulations where we studied spreading on
flat [17, 32] and porous surfaces [38], fibre wetting [25, 39, 40],
capillary imbibition [23, 41, 42] and dewetting [27].

3.1. Liquid

The liquid molecules are eight-atom chains, denoted L. By
considering chains rather than single atoms, we increase the
viscosity of the liquid to more realistic values and consider-
ably reduce evaporation into the surrounding vacuum, which
facilitates the analysis. This strategy is consistent with previ-
ous simulations of wetting dynamics [20, 21, 27, 32, 43, 44].

To maintain a constant distance between any two adjacent
atoms within a given molecule, we incorporate a confining
potential between nearest neighbours i and j

Uconf(ri j ) = Ar 6
i j , (10)

where ri j is their distance of separation. The power 6 is
chosen for computational convenience [32]. The constant
A is derived from the Lennard-Jones interaction parameters
(see section 3.3) and is defined as A = εLL/(σLL)6, where
εi j and σi j are related to the depth of the potential well and
the effective atomic diameter, respectively. Uconf and εLL are
expressed in the same units of energy, and ri j and σLL in the
same units of distance.

3
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Table 1. Liquid and solid properties of the simulation model for
T = 33.33 K and rc = 2.5σ .

Property

Liquid density ρL 1.826 ± 0.007 10−2 atom Å
−3

Solid density ρS 1.712 10−2 atom Å
−3

Surface tension γL 2.49 ± 0.65 mN m−1

Diffusion coefficient (Ddiff)L 56.3 ± 2.1 Å
3

ns−1

Shear viscosity ηL 0.248 ± 0.004 mPa s

3.2. Solid

The solid substrate is a square planar lattice with periodic
boundary conditions, comprising three atomic layers. Each
solid atom, denoted S, is placed at a lattice node 3.93 Å from
its four nearest neighbours, corresponding to 21/6σSS, i.e. the
equilibrium distance between two atoms interacting through
the Lennard-Jones potential. The atoms of the solid vibrate
thermally around their initial equilibrium position according to
a harmonic potential of the form

Uh(�ri) = B|�ri − �r 0
i |2 (11)

with �ri the instantaneous position of a solid atom i and �r 0
i

its equilibrium position [27, 44]. The constant B is also
derived from the Lennard-Jones parameters and is defined as
B = 2.5(εSS(σSS)

2). While very simple, this specification
provides a realistic solid surface that can exchange energy with
the liquid, yet is sufficiently rigid and impermeable.

3.3. Interaction

For simplicity, we assume that the principal interactions within
our system can be described by a pair-wise Lennard-Jones
potential:

ULJ (ri j) = 4εab

[
Cab

(
σab

ri j

)12

− Dab

(
σab

ri j

)6]
. (12)

For convenience, the same values of εab = 33.33 K (4.6 ×
10−22 J) and σab = 3.5 Å are used for the different types of
interaction: L–L, S–S and L–S. This assignment is arbitrary,
but allows us to set the values systematically [23] and also
ensures that the L–S interactions are consistent with the
Lorentz–Berthelot rules. We use the usual cut-off radius of
rc = 2.5σ to truncate the Lennard-Jones potential and keep the
computations manageable. The constants Cab and Dab enable
us to selectively increase or decrease the coupling between
different types of atoms. We set CLL = DLL = CSS = DSS =
1, but keep CSL and DSL variable to allow us to modify the
liquid–solid interactions and hence θ0.

3.4. Simulation characteristics

To define a timescale for our simulations, it is necessary to
assign masses to the atoms. For all the atoms (L and S) we used
mL = mS = 12 g mol−1, i.e. the molar mass of carbon. Once
again, this choice is arbitrary but does not affect our results
qualitatively and allows us to compare them with other related
studies.

The time step between computational iterations is 0.005
ps and the neighbour list is updated every 10 iterations. In
preparation for subsequent data analysis, the xyz positions of
the atoms are recorded periodically at intervals of 100 to 10 000
time steps depending on the kind of analysis required.

All the simulations are carried out at a temperature of
33.33 K, which is kept constant during the equilibration period
using a thermostat based on velocity scaling and applied to
the liquid and solid separately. During a spreading simulation
or the measurement of liquid properties, velocity scaling is
applied only to the solid substrate. This allows us to mimic an
isothermal solid realistically without introducing non-physical
behaviour into the liquid.

3.5. Liquid and solid properties

These are required in order to analyse our results and are listed
in table 1.

The surface tension of our liquid was measured from the
pressure tensor for a free liquid film with planar L–V interfaces
according to the method described previously [27].

The shear viscosity ηL was determined from the diffusion
coefficient (Ddiff)L via the Stokes–Einstein relation:

(Ddiff)L = kBT

6πηLrp
, (13)

where rp is the radius of a probe particle. The diffusion
coefficient was obtained by measuring the mean square
displacement of atoms over long times. For a 3D trajectory
we have [45, 46]

(Ddiff)L = 1

(2 × 3)

1

N
lim

t→∞
d

dt

〈 N∑
i=1

|�ri(t) − �ri (t0)|2
〉
, (14)

where �ri (t0) is the position of atom i at starting time t0 and �ri (t)
its position at time t . The brackets 〈 〉 stand for the average over
several starting times.

We first equilibrated a spherical drop of 216 320 atoms,
of radius ∼140 Å. The drop was generated from an initial
cube over a period of 3 × 105 iterations, which is long enough
to achieve equilibrium, and we ran the measurements over
an additional 106 time steps. The xyz positions of all the
atoms were recorded every 103 time steps. The resulting file
allowed us to follow the displacements of those atoms that
remained within an inner sphere of 70 Å. This volume is of
sufficient size to give a reliable result, but small enough to
ensure we measure only bulk properties free of any influence of
the surface. We took six different starting times and averaged
our results. This gave (Ddiff)L = 56.25 ± 2.05 Å

2
ns−1,

which yields ηL = 0.248 ± 0.004 mPa s. The same diffusion
coefficient was obtained if we followed the displacement of the
centre of mass of a molecule instead of the motion of individual
atoms. This is logical, since the atoms of a given molecule
cannot diffuse independently over an extended distance.

4. Droplet spreading simulations

Having defined our system in terms of its potentials and
parameters and determined the general properties of our liquid,

4
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we can proceed to study the spreading process by examining
the behaviour of a liquid drop when it is brought into contact
with the solid. Specifically, we study the evolution with time of
the contact angle θD(t) and base radius R(t) for a wide range
of solid–liquid interactions and, therefore, a wide range of θ0.

4.1. System construction

To build our system in a consistent way, we construct a
spherical drop of typically 5000 molecules (40 000 atoms)
of radius 77.7 Å above the centre of a planar circular solid
substrate comprising 66 102 atoms. The radius of the solid is
four times larger than that of the drop. This allows sufficient
space for the liquid to spread without reaching the edge of the
solid. The drops are formed by first equilibrating a larger cube
of 27 040 molecules (216 320 atoms) for 3×105 time steps and
then extracting the required drop from the centre of the cube.

Next, we allow the drop and the solid to equilibrate
independently for 105 iterations at constant temperature, with
the drop placed in the vacuum above the substrate at a distance
of 100 Å. The drop is then moved into contact with the solid
and spreading starts. From this moment, only the temperature
of the solid is controlled. The position of each atom of the
liquid is measured every 103 iterations, allowing us to extract
the contact angle of the drop and its base radius from each
snapshot. Drops are followed for 2 × 106–8 × 106 iterations
(10–40 ns), until spreading stops or the contact angle ceases to
change within the noise of the simulation.

To determine the contact angle and base radius at any
instant, we must first locate the liquid–vapour interface.
Details of the method have been given in previous
publications [17, 27, 32]. In brief, we divide the drop into
horizontal layers 3 Å in thickness (small enough to give
sufficient layers while retaining a uniform density within each
layer). By symmetry, we determine the centre of these layers
and calculate the density of atoms as a function of the radial
distance from the centre. The radius of each layer is then given
as the distance from the centre at which the density falls below
a selected cut-off value, typically 85% of the central density.
We checked that our results did not depend on our choice of
this cut-off value. Once we have the profile of the drop, we
can study its evolution with time in a way that mimics real
experiments.

To measure the contact angle, we find the best circular fit
to the measured profile. The first two layers in contact with
the solid are omitted from the fit, since this part of the drop
deviates from its otherwise spherical form [47]. The circular
fit is then extrapolated to the position of the first liquid atoms.
The tangent to the circle at this position gives the contact angle
and the base radius. We have checked that this location gives a
constant drop volume. Figure 2 illustrates the technique.

In our simulations, 18 levels of liquid–solid interaction
were investigated by varying the coupling coefficients in the
Lennard-Jones potential CSL = DSL from 0.2 to 1.3 in
steps of 0.05 or 0.1. Figure 3 gives a typical profile view
of the system at equilibrium for four different liquid–solid
interactions. For the lowest couplings (0.2–0.5), equilibrium
was achieved rapidly, which made the data rather noisy and

Figure 2. Profile of the drop at equilibrium on the solid substrate,
with CSL = DSL = 0.6. Upper and lower surfaces of the solid
substrate are represented by the horizontal dashed lines. The first two
layers of liquid in contact with the solid are omitted. Filled triangles
delineate the edge of the drop, and open circles show the fitted
circular profile.

analysis of the dynamics difficult. We therefore repeated
these simulations with a much bigger drop containing 27 040
molecules (216 320 atoms) having a radius of 140 Å. The
number of atoms in the solid was correspondingly increased
to 104 535. This yielded more stable data to characterize the
dynamics and allowed us to verify that our results were not
dependent on the size of the simulation.

5. Spreading dynamics

Here we compare our MD results with the theoretical
predictions of the MKT. Results for drops of 216 320 atoms
with couplings CSL = DSL from 0.2 to 0.5 are shown in
figure 4(a); results for the smaller drop of 40 000 atoms with
couplings CSL = DSL from 0.55 to 1.1 are shown in figure 4(b).
In each case, the dynamic contact angle starts from 180◦ and
relaxes to its equilibrium value after a period that increases
with the coupling. Thereafter, no change in angle is detectable
within the noise of the simulation. Couplings 1.1, 1.2 and
1.3 all gave complete wetting, with the contact angle tending
asymptotically to zero at long times (>40 ns). Couplings
0.2–1.1 are therefore sufficient to cover the whole range of
wettability investigated. The corresponding values of θ0 (0◦–
166◦) are summarized in table 2 (below). Except in the case of
complete wetting, they are given as the average values over the
plateau region together with their standard deviations.

5.1. Fitting procedures

In previous work, contact angle relaxation data θD(t) from
simulation and experiment were compared directly with the
MKT [17, 32, 49]. It was assumed that the drop remained
spherical throughout spreading, thus providing a link between

5
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Figure 3. Typical profiles of a 40 000 atom drop at equilibrium on the solid substrate with four different couplings and, thus, different
equilibrium contact angles and base radii: CSL = DSL = (a) 0.2, (b) 0.4, (c) 0.6 and (d) 0.8. The 3D images were generated using VMD
software [48].

(b)(a)

Figure 4. MD data for spreading drops of 216 320 atoms (a) or 40 000 atoms (b) for couplings CSL = DSL = 0.2–1.1. The horizontal lines
indicate the equilibrium contact angles θ0.

the base radius R and the droplet volume V . Since the liquid
was of low volatility, V was constant; hence,

dR

dt
= VCL = −dθD

dt

(
3V

π

)1/3
(1 − cos θD)2

(2 − 3 cos θD + cos3 θD)4/3
.

(15)
Combining (15) with (1) then gave a linked pair of

differential equations. Provided γL was known, these could
be solved using a fourth-order Runge–Kutta algorithm to give
θD(t), which could then be fitted to the data with κ0 and λ

treated as adjustable parameters. In cases where the dynamic
contact angle data did not deviate far from equilibrium,
equation (6) replaced (1), yielding just the contact-line friction
coefficient ζ 0

CL. The frequency κ0 could then be determined
only if λ could be estimated, or vice versa.

The above procedure, though effective, has the disadvan-
tage of being rather time consuming and sensitive to the initial
values of the parameters used in the fit. An alternative and
statistically more robust approach has therefore been adopted
here [50]. Recognizing that equations (1) and (6) give VCL as a
function of θD, the R(t) data are first fitted by a ratio of poly-
nomials

Rfit(t) =
∑kmax

k=0 aktk

1 + ∑kmax
k=1 bktk

, (16)

using a Levenberg–Marquardt algorithm together with the
bootstrap method [51] to give an analytical expression, from
which VCL(t) and its estimated error can be obtained by simple
differentiation. Here, ak and bk are the free parameters to
be adjusted and kmax = 10. The function satisfies the limits

6
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Table 2. Equilibrium contact angle θ0, jump frequency κ0 and
contact-line friction coefficient ζ 0

CL obtained from the droplet
spreading data. The value of λ was set at 4.3 ± 0.4 Å.

Coupling
CLS = DLS θ0 (deg.) ζ 0

CL (mPa s) κ0 (1010 Hz)

0.2 165.9 ± 1.6
0.25 156.7 ± 0.5
0.3 147.2 ± 0.4
0.35 141.6 ± 1.0 0.089 ± 0.024 6.55 ± 3.63
0.4 134.8 ± 1.1 0.157 ± 0.043 3.70 ± 2.04
0.45 128.0 ± 0.7 0.222 ± 0.060 2.62 ± 1.44
0.5 121.3 ± 0.8 0.212 ± 0.056 2.74 ± 1.49
0.55 114.3 ± 1.6 0.252 ± 0.069 2.30 ± 1.27
0.6 105.8 ± 2.4 0.364 ± 0.096 1.60 ± 0.87
0.65 99.8 ± 1.4 0.466 ± 0.126 1.25 ± 0.69
0.7 91.2 ± 1.9 0.429 ± 0.114 1.35 ± 0.73
0.75 84.1 ± 1.3 0.425 ± 0.113 1.37 ± 0.74
0.8 74.6 ± 1.7 0.528 ± 0.140 1.10 ± 0.60
0.9 55.4 ± 1.6 0.749 ± 0.197 0.777 ± 0.422
1.0 31.8 ± 0.8 0.868 ± 0.227 0.667 ± 0.361
1.1 0 1.100 ± 0.291 0.528 ± 0.287

Rfit(t = 0) = a0 and Rfit(t → ∞) = al/bl , where l is the
order of the best polynomial, i.e. that which minimizes the
error but still gives Rfit(t) as a concave increasing function.
The radius dynamics can therefore be fitted without additional
assumptions. Since we also measure θD(t), then for each time
t we now have the measured dynamic angle and the calculated
contact-line velocity together with their associated errors. The
complete set of VCL(t) and θD(t) data are then fitted to (1)
or (6) using the Levenberg–Marquardt algorithm to give κ0,
λ and ζ 0

CL. If one has only θD(t) data, the same approach can
be taken by using the spherical cap approximation to generate
the initial R(t) data set.

Before fitting the MD data, certain precautions are
necessary. At the start of the dynamics, we have large contact
angles and relatively large contact-line velocities. These points
are therefore heavily weighted in the fit. Our data for θD(t)
and R(t) are based on the assumption that the drop has a
spherical profile at all times. However, this may not be valid
immediately after contact between the drop and the solid, when
inertial effects may modify the shape dictated by capillarity.
Indeed, inspection of the earliest profiles reveals that the drop
does not become spherical until some time after contact. As
an initial filter, we could simply discard all the data taken
before we have visual agreement between the radius given
by the fitted circular profile and that measured directly. For
the smaller drops this corresponds to the first 0.5–0.7 ns,
depending on the couplings. For the larger drops the period
is 1.3–1.6 ns. However, this procedure is rather subjective. We
have therefore introduced a supplementary criterion based on
direct measurement of R.

To do this, we examine the radial density profile in the
first liquid layer in contact with the solid. We select shells 1 Å
thick, centred on the axis of the drop, and compute the atomic
density as a function of the distance from the axis. This is
illustrated in figure 5. The profile can be fitted by a sigmoidal
function [52], allowing us to locate the contact line and, hence,
the base radius at each time during spreading. The resulting

Figure 5. Typical density profile in the first liquid layer near the
solid substrate for a drop of 40 000 atoms and coupling
CSL = DSL = 0.6 (open circles). The sigmoidal function used to
describe the profile is shown by the line.

Figure 6. Growth of the base radius of a 40 000 atom liquid drop
during spreading at couplings CSL = DSL of (a) 1.0, (b) 0.8 and
(c) 0.6 (open circles). The lines indicate the fits to (16).

R(t) is then compared with that obtained by fitting the circular
profile. We then consider the MD data to be useable once
there is agreement between both techniques. This test is more
objective and allows us to confirm our initial visual assessment.
Because the circular fits ignore the first two layers, these tend
to give slightly smaller values of R than we get by analysing
the first layer directly. We therefore apply a small correction
based on the difference at equilibrium.

Once we have selected the useable data, we can commence
the fitting procedure. Since the MKT is meant to be universal,
it should not matter which part of the dynamics we study. We
therefore fit the R(t) data to (16) for eight different starting
times. Figure 6 gives examples of the behaviour of the base
radius for a liquid drop of 40 000 atoms at couplings CSL =
DSL = 1.0, 0.8 and 0.6. Also shown are the relevant fits to (16),
which yield VCL(t) on differentiation.
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Figure 7. Typical behaviour of θD(VCL) during the spreading of a
40 000 atom drop at couplings CSL = DSL of (a) 1.0, (b) 0.8 and
(c) 0.6. The fits to (6) are shown by the smooth curves.

Figure 8. Velocity dependence of the contact angle for
CSL = DSL = 0.35–1.1, plotted using the inverse of equation (1)
with values of θ0, κ0 and λ from table 2. Symbols are used to
distinguish the different curves.

5.2. Comparison with the MKT

Since γL is small (2.49 × 10−3 N m−1) and we discard the
highest velocities, the argument of the sinh function in (1) will
tend to be small over the range of our data. As we show
below (section 6.3), the jump distance λ in the simulations
is 4.3 ± 0.4 Å, independent of the coupling. This gives
γLλ3/2kBT ∼ 0.5 and indicates that our data are in the linear
regime described by equation (6) and characterized by ζ 0

CL.
While it is possible to fit the data with even greater precision
using (1), the resulting values of κ0 and λ are correlated
through ζ 0

CL and are not robust. We therefore fit the θD(t)
and the eight sets of VCL(t) data to (6) for each liquid–solid
coupling using the known values of γL and θ0. The multiple
fits enable us to check that our procedure is consistent and to
estimate the errors on κ0 and ζ 0

CL.
Typical results are given in figure 7. At the lowest

couplings (0.2–0.3), spreading was too rapid and the statistical

Figure 9. Dependence of the maximum velocity of wetting V180 on
the equilibrium contact angle. The curve shows the theoretical
dependence assuming �g∗

SL ∼ Wa0
SL . The filled circles are the

individual values from figure 8.

noise too great to yield stable fits even for the larger drops. For
the remaining couplings (0.35–1.1), the results in terms of the
contact-line friction coefficient ζ 0

CL and the jump frequency κ0

are listed in table 2, together with their standard deviations.
The values of κ0 were calculated using the constant value
λ = 4.3 ± 0.4 Å. We also confirmed that the general MKT
equation (1) gives the same values of κ0 when fitted with the
imposed value of λ.

Before proceeding, it is helpful to examine the overall way
in which the dynamics of wetting in our simulations depends
on the level of solid–liquid interactions, i.e. on θ0. In figure 8,
the dynamic contact angle θD is plotted as a function of VCL

for each coupling, using the inverse of equation (1) with the
values of θ0, κ0 and λ from table 2. The original MD data
are omitted for clarity. Two features are worthy of comment.
First, the curves are rather linear, especially when plotted as
cos θD(VC) (see the inset), thus validating our choice of (6) for
the fits. Second, the curves show that as θD approaches 180◦
the highest wetting speeds are attained at couplings that give
intermediate equilibrium contact angles. Except for the two
lowest couplings, the curves initially extend to higher speeds
as θ0 is increased and then retreat. This is fully consistent with
theory.

As we saw in section 2, if �g∗
SL ∼ Wa0

SL, the MKT
predicts an optimum equilibrium contact angle that maximizes
contact-line speed whenever condition (8) is satisfied [29].
Calculation shows that for the simulated system the LHS of
this inequality is ∼ 1.5, hence a weak maximum is expected.
Based on equation (9), the highest wetting speed should occur
for θ0 ∼ 70◦. Figure 9 shows a plot of V180, the predicted
contact-line velocity at which θD = 180◦, versus θ0. This
was calculated by combining equations (1) and (4), setting
cos θD = −1. The site density n in (4) was assumed equal
to the number of atoms per unit area of the solid surface,
6.47 × 1018 m−2, since all the atoms contribute to the work
of adhesion and their spacing determines the distribution of
potential-energy wells (see figure 16, below). Comparing

8
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(a) (b)

Figure 10. (a) ln κ0 and (b) ln ζ 0
CL versus the work of adhesion Wa0

SL for spreading drops with CSL = DSL = 0.35–1.1. The lines show the
relationships predicted by (4) and (7), respectively.

the theoretical curve with the individual values of V180 from
figure 8 reveals broad agreement except at the lowest coupling,
for which the uncertainty on κ0 is comparatively large. This
result not only implies that (4) is substantially correct, i.e. that
�g∗

SL ∼ Wa0
SL for our system, it gives a direct indication of

the significant and complex way in which equilibrium wetting
properties can affect dynamic wetting.

Turning now to the specific influence of solid–liquid
interactions on κ0 and ζ 0

CL, equations (4) and (7) predict
that ln κ0 should decrease linearly with Wa0

SL or cos θ0,
while ln ζ 0

CL should increase. Figure 10 confirms that these
predictions are well born out by our results, except at the lowest
coupling. Indeed, the agreement with theory is remarkable.
The lines through the data are not fits. They are those given
by (4) and (7) using the system parameters from table 1 plus
νL = 5.48 × 10−31 m3, and n = 6.47 × 1018 m−2, without
adjustment. The flow volume νL was estimated as the volume
of one segment of a liquid molecule (i.e. one-eighth of the
molecular volume). This seems reasonable, as the molecules
are very flexible (polymer-like) and can move only into holes
that appear within the liquid. These holes tend to be of segment
size. The site density n was assumed equal to the number of
atoms per unit area of the solid surface, as above.

6. Verification of fitting parameters κ0 and λ

As we have seen, the MKT accounts for the dynamics of
spreading in our simulations very well. However, the fact that a
theory can fit some data is not sufficient to prove it valid. Some
independent assessment of the fitting parameters is essential.
One of the advantages of MD simulations is that they allow us
to look very closely at the atomic motions, something that is
impossible in a real experiment where the molecular scale is
inaccessible. In what follows, we therefore study the random
thermal displacements of the atoms at equilibrium to determine
κ0 and λ directly and compare them with the fitted values.
Strategies for the direct measurement of κ0 and λ have already

Figure 11. Mean density profiles of the liquid in the z-direction for
CSL = DSL = 0.2–1.1. The surface of the solid (at z = 8.86 Å) is
defined as the plane through the centres of the top layer of solid
atoms.

been developed by De Coninck et al [17, 28, 32, 40, 53]. The
approach taken here is similar, but with refinements to reduce
ambiguity and improve precision.

The first step is to determine the equilibrium density
profile in the z-direction normal to the solid surface. This is
done by computing the atomic density within 0.25 Å thick
horizontal slices starting at the solid and working outward into
the bulk. The mean density profiles ρ(z) obtained for each of
the couplings between 0.2 and 1.1 are plotted in figure 11.

As previously observed in MD simulations [17, 40,
54–56], the liquid is strongly layered near the solid at high
couplings. As the coupling is reduced, the layering becomes
progressively less pronounced, until at CSL = DSL = 0.2
the profile resembles that of the liquid–vapour interface. Far
away from the solid (>25 Å), any layering decays and the
liquid has a uniform density equal to that of the bulk ρL =
1.826 ± 0.007 × 10−2 atoms Å

−3
(figure 11, inset).
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(a) (b)

Figure 12. (a) Cumulative percentage of atoms from the first layer that have made a parallel (open circles) or perpendicular (small filled
circles) jump as a function of time. The horizontal line indicates the time at which half the atoms have jumped. (b) Associated probability
density distributions. The data are the average over 500 different starting times for a 40 000 atom drop with CSL = DSL (A) 1.0, (B) 0.8 and
(C) 0.6.

At equilibrium, liquid atoms adjacent to the solid surface
undergo random thermal displacements, jumping from one
potential well to the next and from one layer to another, but
with no net flux, so that κ+ = κ− = κ0. Displacements are
in any direction (except into the solid), so there exist multiple
definitions for jumps that contribute to contact-line motion.
The equilibrium frequency κ0 will be some average of all
possible types of atom displacement. Nevertheless, due to the
layering, these movements are likely to be anisotropic, with
greater mobility within a given layer than between layers. We
therefore divide the displacements into two categories:

• parallel jumps within the first layer at frequency κ0
‖ ;

• perpendicular jumps between the first and second layers at
frequency κ0

⊥.

Ideally, we should focus on the molecular displacements
within the TPZ, where the density profile ρ(z) is inevitably
modified by the proximity of the L–V interface. Since the TPZ
is only a few atoms thick and subject to large fluctuations, this
is not straightforward. However, motion of the contact line
during spreading is possible only because of a net flux into the
first layer. We therefore apply our analysis to the entire first
layer, assuming uniform behaviour throughout.

From the density profile, we locate the first two layers
at each coupling. A parallel jump is then defined as a jump
within the first layer (in the xy-plane) of not less than d‖,
the distance between adjacent atoms in the solid surface,
i.e. 3.93 Å. Smaller displacements are considered as thermal
agitation. Because we are at equilibrium, the rate of jumping
in a given direction will be the same as in the reverse. It is
easier to count all jumps, both backwards and forwards, so we
have to divide the result by 2 to determine κ0

‖ .
Similarly, a perpendicular jump is defined as a jump from

the first layer to the second one, with a displacement along
z of not less than d⊥, the distance of separation between the
two first peaks in the profile (slightly less than σ ). Smaller
jumps and rare jumps between layer 1 and layer 3 or beyond

are neglected. Since the rate of jumping from layer 1 to layer 2
will be the same as from layer 2 to layer 1, we need count the
jumps in only one direction to determine κ0

⊥.
The above definitions are essentially those used by de

Ruijter et al [17, 32, 53] and could equally be applied here.
However, to distinguish perpendicular and parallel jumps more
precisely and so avoid the risk of double counting, we now
introduce secondary criteria. A parallel jump is counted only
if any associated displacement in the z-direction is less than
d⊥. Similarly, a perpendicular jump is counted only if any
associated displacement in the xy-plane is less than d‖. These
restrictions have the advantage of separating perpendicular and
parallel displacements into two distinct groups.

Once we have these definitions, we can analyse the xyz-
file of all the atoms initially in the first layer (up to 5000) and
follow them during the simulation to find the time necessary
to make a jump. This analysis gives us distributions of jump
distances and frequencies. To improve precision, we average
over 500 different starting times t > t0 (the time at which
equilibrium is achieved). For the highest frequencies, the
simulations are re-launched from equilibrium for a further
2×105 iterations with more frequent recording of the positions
(every 100 time steps).

6.1. Jump frequency κ0

Using the criteria described above, we can determine the
cumulative percentage of atoms initially in the first layer that
have made a parallel or perpendicular jump as a function of
time. Typical results are given in figure 12(a) for a 40 000 atom
drop at couplings CSL = DSL (A) 1.0, (B) 0.8 and (C) 0.6.
Several features are evident. There is a short induction time
before the first atoms jump. The curves then tend to saturate at
long times when all the atoms have had sufficient time to make
a jump. Significantly, parallel displacements occur at a higher
rate than perpendicular ones. Furthermore, the S–L coupling
has a significant influence on both types of displacement: the
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Figure 13. Frequency of jumps as a function of the coupling: κ0
‖

(filled squares), κ0
⊥ (filled triangles), κ0 from table 2 obtained by

fitting the spreading dynamics with the MKT (open circles).

bigger the coupling the lower the rate for both parallel and
perpendicular jumps.

By differentiating the cumulative data, we obtain the
probability density distributions of the time required to make
a jump. These are given in figure 12(b). All have
pronounced maxima but are skewed to long times. Ideally,
we should consider the complete distribution to calculate the
characteristic mean value of κ0

‖ or κ0
⊥ by inversion. To

simplify the procedure, we assume that the average time for
the collective movement of all the atoms is the time required
for half the atoms of the first layer to have made a parallel or
perpendicular jump [17, 28, 51]. This time is easily identified
in figure 12(a). The characteristic frequency is then the inverse
of this time, remembering to divide by 2 in the case of κ0

‖ .
By repeating the counting procedure for each of the 500
starting times, we obtain average values of κ0

‖ and κ0
⊥ for each

coupling together with their standard deviations. The results,
together with the values of κ0 obtained by fitting the spreading
dynamics with the MKT, are plotted in figure 13 as a function
of the coupling.

Comparing the results, we see that κ0
‖ > κ0

⊥, for all
the couplings even though d⊥ < d‖. This implies that the
anisotropy of liquid displacement immediately adjacent to the
solid is not simply due to the layering, since this is absent at the
lowest couplings. It turns out that κ0

‖ ∼ 2κ0
⊥, so the difference

may largely be due to the additional degree of freedom in the
xy–plane. Furthermore, there is broad agreement between
κ0

⊥ and κ0 over a wide range of couplings, which confirms
the result obtained by de Ruijter and co-workers for a more
limited range [17, 32, 53]. Spreading is possible only if there
is a net flux into the first layer. Because adsorption and
desorption of atoms from the solid surface is less frequent than
a displacement along the surface, the former becomes the rate-
determining event for spreading in our system. The upward
drift of κ0 at the lowest couplings is also logical. As the density
of atoms in the first layer is reduced, adsorption–desorption
events will play a decreasing role in dynamic wetting.

Figure 14. Time evolution of the peak density of the first layer near
the solid surface, due to an instantaneous switch of the S–L coupling
at t = 0, from CSL = DSL = 0.2–1.1. The curve is the best fit
to (17).

Inevitably, our definitions of parallel and perpendicular
jumps are somewhat arbitrary. We have therefore checked what
happens if we abandon the secondary criteria introduced here
to avoid double counting and simply use the original definitions
of de Ruijter. What we have found is that the values of κ0

‖ are
increased only slightly, whereas those of κ0

⊥ are approximately
doubled. This implies that successful parallel jumps are hardly
contaminated by a perpendicular component, whereas about
half of all perpendicular jumps have a significant parallel
component. Again, this probably reflects the higher mobility
within the bottom layer in comparison with that between the
first two layers. However, whichever definition we use, the
agreement between the measured rate of jumping and that
found by applying the MKT to droplet spreading remains very
good.

6.2. Interfacial relaxation

An alternative and completely independent approach to
estimating κ0 is to determine the characteristic time for the S–
L interface to relax from one state to another. Suppose we start
with the system at equilibrium with CSL = DSL = 0.2 and then
instantaneously switch the coupling from 0.2 to 1.1. Because
the two couplings induce different density profiles (figure 11),
the atoms at the interface will reorganize themselves. We can
follow this reorganization by measuring the peak density in the
first liquid layer ρpeak as a function of time, and model it by a
simple exponential:

ρpeak(t) = ρ
peak
1.1 + (ρ

peak
0.2 − ρ

peak
1.1 ) exp

(
− t

τrelax

)
, (17)

where ρ
peak
1.1 and ρ

peak
0.2 are the peak densities in the first

layer for CSL = DSL = 1.1 and 0.2 respectively,
and τrelax is the characteristic relaxation time. An
example is given in figure 14, where we see there is
quite good agreement between the observed behaviour
and (17). The fit gives τrelax = 0.038 ± 0.002 ns,
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Figure 15. Distribution of the length of a jump in the first layer. The
data represent the probability density for up to 5000 atoms in the first
layer over 500 different starting times for a 40 000 atom drop at
couplings CSL = DSL = 1.0 (filled squares), 0.8 (open circles) and
0.6 (filled triangles).

corresponding to a frequency 1/τrelax = 2.6 ± 0.1 × 1010 Hz.
This is close to the value of κ0 for a coupling of 0.55, i.e. about
midway between the values for the initial and final states
(figure 13). Thus, we can reasonably infer that the S–L
interface relaxes at κ0.

As well as giving greater confidence in the values
of κ0 found by applying the MKT, this conclusion also
provides support for the interfacial tension relaxation process
invoked in Shikhmurzaev’s hydrodynamic model of dynamic
wetting [13, 14, 57]. From the surface tension of the liquid and
the change in the equilibrium contact angle, we can infer that
the S–L interfacial tension changes by some 4.9 mN m−1 as
the interface reorganizes. At a wetting speed of, say, 10 m s−1

(which is slightly larger than any in figure 8), a relaxation time
of 0.038 ns implies that this gradient operates over a distance
of less than 1 nm, i.e. within the dimensions of the TPZ.
Nevertheless, as previously observed [58], the values of 1/κ0

found by applying the MKT to dynamic contact angle data
for relatively viscous aqueous glycerol solutions on a polyester
substrate are strikingly similar to the S–L interfacial relaxation
times obtained by applying Shikhmurzaev’s model to the same
data. This agreement reflects a degree of commonality between
the two models despite their radically different descriptive
approach.

6.3. Jump distance λ

The jump distance can be investigated in much the same
way as the frequencies. Results for the three couplings
used for κ0

‖ and κ0
⊥ are given in figure 15. The probability

distributions show that, unlike κ0, λ does not depend on the
coupling. This conclusion is consistent with the idea that the
jump distance is related to the spacing of the potential wells
(adsorption sites) at the solid surface and, therefore, to the
lattice spacing. However, like the time distributions, those for
the jump distance are asymmetric. They start at the minimum

Figure 16. Contour map of the potential energy due to
Lennard-Jones interactions for a single liquid atom interacting with
the solid at distance σ from the surface, with CSL = DSL = 1.0. The
white areas show the position of the solid atoms. The adsorption sites
are located where the interactions are the most attractive (lowest
energy), i.e. the dark areas between the solid atoms.

value of 3.93 Å required to be counted as a jump, peak rapidly
at about 4.0 Å, and then decay more slowly towards zero with
a long tail. Consistent with our procedure for κ0, we take
the mean value given by the distribution as the characteristic
value of λ for the collective motion of the contact line in our
simulations, i.e. λ = 4.3 ± 0.4 Å. This is the value we have
used throughout this paper, notably in section 5.2 to fit our
spreading data and determine κ0 (table 2).

In previous studies, [17, 32, 40, 53], λ was taken simply
as the distance between two atoms on the solid surface, i.e. d‖.
Evidently, the reality is more complex. The distribution
of jump distances can be understood with reference to the
potential-energy landscape experienced by a liquid atom at
the surface of the solid. This is illustrated in figure 16.
The geometry of the solid results in adsorption sites (places
where the attraction is the greatest and the potential wells
correspondingly deep) located between the solid atoms. A
liquid atom can jump from any given site to any neighbouring
one. However, simple quantization of the distance based on
the lattice parameters will be prevented because each atom is
tethered to its own molecular chain. A smooth distribution of
jump distances therefore results. Since diagonal and longer
jumps are possible, the mean value of λ is inevitably greater
than d‖.

7. Conclusion

The results presented here illustrate the value of large-scale
molecular dynamics in modelling wetting and spreading at
both global and molecular scales. Simulation is an important
tool to help us understand the underlying physics. However,
any conclusions must be tempered by an acknowledgment of
the limitations imposed by current computational power and
the relative simplicity of the systems we are able to investigate.
Few of our simulations ran for more than 40 ns of notional
real time; the largest drops studied were 140 Å in diameter,
and intermolecular interactions (S–L and L–L) were governed
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only by truncated Lennard-Jones potentials and Newton’s laws.
The liquid comprising our drops had a low density, surface
tension and viscosity compared with a real liquid. The solid
studied, though realistic in the sense that it was atomistic,
rigid, impermeable and able to interact thermally with the
liquid, was also atomically smooth and therefore free of
the heterogeneities and roughness that characterize most of
the solid surfaces encountered in the real world. Leaving
aside the statistical fluctuations, wetting therefore proceeded
smoothly, without any evidence of collective pinning events.
Thus, one might conclude that both our system and our
results are somewhat idealized. Nevertheless, systems such
as those modelled here do provide a sound baseline for the
behaviour we can expect to find in a real experiment. We can
realistically expect that all the physics we see will be present
in a real system. More complex surfaces will be investigated
in the future. Some of the assumptions made in reaching
our conclusions are no doubt open to challenge; however,
we believe all the choices we have made are reasonable and
defensible.

Our new work essentially refines and substantially extends
that reported previously [17, 28, 32, 40]. We have confirmed
that the dynamics of spreading and wetting in our system is
described rather accurately by the molecular-kinetic theory,
and that contact-line friction is the dominant channel of
dissipation. By applying the MKT to our spreading data and
also analysing the detailed behaviour on the atomic scale, we
have been able not only to model the global behaviour of
the dynamic contact angle as a function of contact-line speed,
but to demonstrate that the key parameters in the model, κ0

and λ, are an accurate reflection of the molecular motions
at the atomic scale. Thus, the MKT appears valid at some
fundamental level. Further verification has been provided
by interfacial relaxation studies, which also lend support to
Shikhmurzaev’s hydrodynamic description of dynamic wetting
and reflect a degree of commonality between the underlying
models.

In addition, we have been able to confirm that the
intrinsic wetting properties of the system as measured by the
equilibrium contact angle θ0 and work of adhesion Wa0

SL have
a direct influence on the dynamics of wetting. Furthermore,
this influence can be accounted for with good precision via
equations (4) and (7) over a very wide range of equilibrium
contact angles (up to at least 135◦). The exponential nature
of the dependence of κ0 and ζ 0

CL on Wa0
SL is clear evidence

of the influence of the potential-energy landscape of the solid
on wetting dynamics. The new results also demonstrate for
the first time that, while κ0 and ζ 0

CL depend in a consistent
way on the coupling between the liquid and the solid, λ is
determined principally by the spacing of the adsorption sites
on the solid surface and is therefore constant for our system.
It is, however, slightly larger than the lattice spacing. One of
the consequences of the link between κ0 and Wa0

SL is that there
exits an optimum θ0 that maximizes the speed of wetting. This
outcome has highly practical ramifications in diverse areas
from high-speed coating to microfluidics.
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